
BIOMEDICAL SIGNAL PROCESSING USING
TMS320C6713 DSK

Project submitted in partial fulfillment of requirements

For the Degree of

BACHELOR OF ENGINEERING

BY

ELIZABETH ALANKARA

POOJA BANDEKAR

KAVITA DATE

APARNA BHUKTAR

Under the guidance of

Internal Guide

Prof. K. T. TALELE

Department of Electronics Engineering

Sardar Patel Institute of Technology

University of Mumbai

2008-2009

BHARTIYA VIDYA BHAVAN’S

SARDAR PATEL INSTITUTE OF TECHNOLOGY

 MUNSHI NAGAR, ANDHERI (W),

MUMBAI - 400 058.

2008-09

CERTIFICATE OF APPROVAL

This is to certify that the following students

ELIZABETH ALANKARA

POOJA BANDEKAR

KAVITA DATE

APARNA BHUKTAR

have successfully completed and submitted the project entitled

“BIOMEDICAL SIGNAL PROCESSING USING TMS320C6713
DSK”

towards the fulfillment of Bachelor of Engineering course in Electronics of the

Mumbai University

_________________ _________________

Internal Examiner External Examiner

_______________ _______________ _________________

 Internal Guide Head of Department Principal

ACKNOWLEDGEMENTS

We would like to thank our internal guide and head of department, Prof K. T. Talele, for

his overwhelming support during the entire phase of our project. His able guidance was

instrumental in us achieving our goal.

We would also like to express our sincere gratitude to Lect. R. G. Sutar and all those who

have contributed to the development of this project. Their encouragement and guidance

has contributed immensely in the successful completion of this project. We would like to

thank our college Sardar Patel Institute of Technology for providing us with all the

resources that we required to go through the various phases of the project. The project

would not have shaped up the way it has without the support and cheerful encouragement

of our professors. We are thankful to the entire staff of the Electronics Department.

Finally, we would like to thank all the people who have taken painstaking efforts and

provided us with information needed for the successful completion of this project.

TABLE OF CONTENTS
1. INTRODUCTION…………………………………………………………...1

 1.1 PROBLEM DEFINITION……………………………………………..2

 1.2 SUBJECT BACKGROUND…………………………………………..3

 1.2.1 TRANSDUCERS…………………………………………………3

 1.2.2 SIGNAL CONDITIONING……………………………………...3

 1.2.3 FILTERS………………………………………………………….4

 1.2.4 PROCESSING UNIT…………………………………………….4

 1.3 CONCEPTUAL BLOCK DIAGRAM………………………………...5

1.4 SCOPE OF THE PROJECT…………………………………………….6

 2. THE ELECTROCARDIOGRAM………………………………………….7

 2.1 INTRODUCTION TO ECG …………………………………………...8

 2.2 ECG WAVES…………………………………………………………..9

 2.3 ECG LEADS…………………………………………………………..10

 2.3.1 STANDARD LIMB LEADS……………………………………10

 2.3.2 3-AUGMENTED LIMB LEADS……………………………….11

 2.3.3 6-PRECORDIAL LEADS………………………………………11

 2.4 USES OF ECG………………………………………………………...12

 3. LITERATURE SURVEY…………………………………………………13

 3.1 GENERAL DESCRIPTION…………………………………………..14

 3.2 FUNCTIONAL BLOCK DIAGRAM………………………………...15

 3.3 COMPONENT DESCRIPTION………………………………………16

 3.3.1 BUFFER…………………………………………………………17

 3.3.2 SENSORS……………………………………………………….17

 3.3.3 MULTIPLEXERS……………………………………………….18

 3.3.4 FILTERS………………………………………………………...20

 3.3.4.1 LOW PASS FILTER………………………………………21

 3.3.4.2 HIGH PASS FILTER……………………………………...22

 3.3.4.3 NOTCH FILTER…………………………………………..24

 3.3.5 TL082 OPERATIONAL AMPLIFIER………………………….26

 3.3.6 INVERTING AND NON-INVERTING AMPLIFIER………….29

 3.3.7 VOLTAGE REGULATOR………………………………………31

 3.3.7.1 IC7905 REGULATOR……………………………………..31

 3.3.8 TMS320C6713……………………………………………………32

 3.3.9 PATTERN CORRELATION…………………………………….33

 3.3.10 HEARTRATE DETECTION…………………………………...37

4. HARDWARE IMPLEMENTATION……………………………………...40

 4.1 CIRCUIT DIAGRAM…………………………………………………41

 4.2 WORKING…………………………………………………………….42

 4.3 COMPONENT LIST…………………………………………………...43

5. SOFTWARE IMPLEMENTATION………………………………………..44

 5.1 OVERVIEW OF CODE COMPOSER 3.1……………………………..45

 5.2 ALGORITHMS…………………………………………………………46

6. RESULT ANALYSIS AND CONCLUSION………………………………47

 6.1 RESULT ANALYSIS…………………………………………………..48

 6.2 CONCLUSION…………………………………………………………49

7. FUTURE SCOPE…………………………………………………………....50

APPENDIX……………………………………………………………………..52

REFERENCES………………………………………………………………….81

LIST OF FIGURES

Figure 1 ECG Processing conceptual block diagram…………………………………………..5
Figure 2 ECG waves……………………………………………………………………………8
Figure 3 ECG wave components……………………………………………………………….9
Figure 4 Standard limb leads…………………………………………………………………..10
Figure 5 Axis positions of standard leads……………………………………………………..11
Figure 6 Functional block diagram…………………………………………………………….15
Figure 7 Non-inverting buffer………………………………………………………………….17
Figure 8 ECG sensors…………………………………………………………………………..18
Figure 9 ICT4051B Pin Configuration…………………………………………………………19
Figure 10 8:1 multiplexer truth table……………………………………………………………19
Figure 11 Low pass filter………………………………………………………………………..21
Figure 12 Frequency response of low pass filter………………………………………………..22
Figure 13 A passive analog first order high pass filter realized by RC circuit………………….23
Figure 14 Frequency response of high pass filter……………………………………………….24
Figure 15 Notch filter……………………………………………………………………………25
Figure 16 Frequency response of notch filter……………………………………………………25
Figure 17 OP-AMP connection diagram………………………………………………………..26
Figure 18 Internal schematic of IC TL082B…………………………………………………….27
Figure 19 OP-AMP IC TL082B specifications………………………………………………….29
Figure 20 Inverting Amplifier……………………………………………………………………29
Figure 21 Non-inverting Amplifier………………………………………………………………30
Figure 22 7905 Fixed voltage regulator configuration…………………………………………..31
Figure 23 TMS320C6713 Internal block diagram……………………………………………....33
Figure 24 Correlation patterns…………………………………………………………………..35
Figure 25 Graphical interpretation of the multi-channel correlation results…………………....36
Figure 26 An ECG wave…………………………………………………………………………38
Figure 27 ECG wave 10 sec rule………………………………………………………………...38
Figure 28 ECG signal conditioning circuit………………………………………………………41
Figure 29 ECG displayed using CCS.v3.1………………………………………………………48

ABSTRACT

Medical practitioners analyze the electrical activity of the heart in order to detect or predict

various disorders by interpreting the information provided by the Electrocardiogram signal of the

patient. This project aims at processing and matching of an ECG signal with a database for the

detection of abnormal heart conditions based on pattern comparison. The basis for the pattern

matching algorithm without feature extraction is an ECG wave from database with ECG signals

and patient diagnosis information. The recognition takes place by comparing the wave forms of 3

leads of the examined ECG with the same leads of different ECGs from the database. The

similarity of the compared ECG beats is calculated with the cross correlation function. By means

of the algorithm, we select ECGs of the database which are the most similar to the examined

ECG considering all of the individual leads. Using the available database information, the

diagnosis which corresponds to the most similar ECGs of the database is then identified as the

diagnosis for the examined ECG. In our project we have used a Texas Instruments

TMS320C6713 DSK to generate and process the electrocardiogram signal in digital domain.

1

1. INTRODUCTION

2

1.1 PROBLEM DEFINITION

The Electrocardiogram (ECG) is one of the most important signals used by medical

practitioners to analyze the electrical events in the human cardiac cycle. The ECG signal

finds wide applications in evaluation of rhythm disorders, in screening tests for coronary

heart diseases, etc. The ECG signal can be generated using a single lead, 3 leads or 12

leads.

The ECG signal generated using standard leads contains noise in the form of power line

noise, baseline wander, and muscle noise etc. This noise needs to be filtered out using

suitable filters.

Also, modern developments in the field of medical science have laid the emphasis on

real-time monitoring, processing and analysis of electrocardiogram signal. The

Electrocardiogram signal needs to be compared with a database of ECG signals

corresponding to different heart conditions. Such a technique can be used for the

detection of certain conditions which might otherwise go unnoticed when observed by the

naked eye.

Here, there arises a need for design of a system which captures Electrocardiogram signal

from human body, filters it to remove noise components present in the signal, samples

and digitize it in real-time and correlates it with an already stored database. For real-time

processing of Electrocardiogram data fast processors are required. The DSP processors

can be the best choice for design of such real-time ECG signal.

3

1.2 SUBJECT BACKGROUND

The technique is based on the hypothesis that those ECGs whose signal waveforms are in

best agreement in their leads can in all probability be assigned to the same diagnosis. As

this assumption is at the basis of medical experience, it should be possible to obtain the

diagnosis for an unknown ECG from a comparison between the signal waveforms of this

ECG with unknown diagnosis and an ECG of known diagnosis stored in a database. The

technique thus starts from the assumption that the waveforms of the quasi-periodical

signal sections of the leads of the 12-channel ECG represent a "finger print" of

the ECG in question.

1.2.1 TRANSDUCERS

A transducer is a device that converts a physical quantity into an electrical quantity such

as voltage or current. The electrical activity of heart can be converted into a measurable

electrical signal by using a suitable transducer. The performance of a system depends

upon the quality of ECG signal obtained from transducer.

1.2.2 SIGNAL CONDITIONING

A signal conditioning circuit helps to enhance the strength of a signal obtained at the

output of transducer to a range that can be directly applied to a measuring or processing

system. The ECG signal obtained at transducer output is in the range of mV and its

current capacity is low. Hence, the signal needs to be passed through a set of buffers and

voltage amplifiers. The signal conditioning circuit should have very high noise immunity

so that it does not add noise to the originally weak ECG signal.

4

1.2.3 FILTERS
A filter is a device which removes the unwanted frequency signals from the input signal.

The ECG signal from transducers needs to be filtered using following filters:

• High-Pass Filter

• Low-Pass Filter

• Band-reject Filter

A high pass filter should be used to remove the DC component from the

Electrocardiogram signal, noise due to baseline wandering, i.e., due to perspiration,

respiration and body movements of patient and the noise from body electrodes. A low

pass filter should be used to remove the high frequency components such as RF

interference, Electromagnetic interference and muscle noise without affecting the high

frequency components of desired ECG wave. A precise and accurate Band-reject (notch)

filter should be used to remove power line noise of 50Hz frequency.

1.2.4 PROCESSING UNIT

A processing unit can be a microcontroller, a microprocessor or any other hardware. For

real time processing, it has been observed that ECG processing using Digital Signal

Processor is most efficient. The TMS320C6713 is a fast special-purpose digital signal

processor with a specialized type of architecture and instruction set appropriate for signal

processing. The processing speed of DSP processor is large enough to digitize and

process the incoming ECG signal in real – time.

5

1.3 CONCEPTUAL BLOCK DIAGRAM

The following figure shows the conceptual block diagram of an ECG processing system

Figure 1. ECG Processing Conceptual Block Diagram

An ECG processing system consists of following:

• Input ECG signal

• Signal Conditioning Circuit

• TMS320C6713 DSK Board

• Personal Computer or a monitoring device

• Application Software (Code Composer Studio)

A real-time ECG signal is applied to the signal conditioning circuit. The signal level is

enhanced by the conditioning circuit and is filtered by series of filters. The filtered signal

is applied at the input of Digital Signal Processor where it is digitized and compressed.

The ECG waveforms and the significant parameters of ECG are viewed on Personal

Computer using the application software Code Composer Studio 3.1.

6

1.4 SCOPE OF THE PROJECT

The term ECG processing can include digitization, noise removal, storage of the signal,

correlation with database and displaying the results. Since the development of this project

required a lot of literature survey, there was a limit on the implementation part of project.

It is not possible to incorporate all the required processing features since time and

resources have been the major constraint. Hence taking into consideration above

mentioned points, the scope of this project was limited to a smaller manageable size. The

scope of this project includes:

• capturing an ECG signal from patients body, its amplification and conditioning

• digitization of captured signal

• filtering to remove noise components

• creation of a database

• correlation with the database

• displaying the obtained results

The filtering of ECG signal is done in analog domain using RC filter networks with

proper cut-off frequencies whereas the compression/decompression and determination of

heart rate is implemented in digital domain.

We have considered fair amount of modules for purpose of implementation of this project

like study of Electrocardiogram waves, their frequency components, sources of noise

along with the study of TMS320C6713 DSK and associated application software Code

Composer Studio 3.1.The project has been designed taking into considerations the basic

requirements of end user.

7

2. THE ELECTROCARDIOGRAM

8

2.1 INTRODUCTION TO ECG

An electrocardiogram (ECG) is a time-varying signal that represents the activity of the

heart. Each event has a distinctive waveform, the study of which can lead to greater

insight into a patient’s cardiac pathophysiology. An ECG can also be defined as a time-

varying signal reflecting the ionic current flow which causes the cardiac fibers to contract

and subsequently relax.

An Electrocardiogram signal can be used for detection of coronary artery disease,

cardiomyopathies and left ventricular hypertrophy. It can also provide information for

evaluation rhythm disorders.

The ECG can be obtained by recording the potential difference between various

electrodes placed on the surface of the skin, at specific locations. A single normal cycle

of the ECG occurs with every heart beat. The various components of ECG signal are as

shown in the below:

Figure 2. ECG waves

9

2.2 ECG WAVES

The ECG signal comprises of various waves and these waves are explained below:

P wave: The sequential depolarization of the right and left atria

QRS complexes: Right and left ventricular depolarization

T wave: Ventricular repolarization

U wave: After depolarization in the ventricles

The following figure shows how the ECG signal is formed due to the combination of

such waves.

The typical values of ECG are as

given below:

P wave 0.25mV

R wave 1.60mV

Q wave 0.4mV

T wave 0.1mV- 0.05mV

Duration of Interval:

P-R Interval 0.12 - 0.20sec

Q-T Interval 0.35 - 0.44sec

S-T Segment 0.05 - 0.15sec

QRS Interval 0.09 sec

P Interval 0.11 sec Figure 3. ECG wave components

10

2.3 ECG LEADS

ECG leads are electrodes which measure potential difference between two points on the

body or between one point on the body and a virtual reference point with zero electrical

potential located at the centre of heart. The leads which measure the potential difference

between two points on the body are called as bipolar leads and the leads which measure

potential on one point on the body w.r.t virtual reference point are called as unipolar

leads. A standard ECG measuring apparatus consists of 12 leads:

• Standard Limb Leads

• 3 Augmented Limb Leads

• 6 Precordial Leads

2.3.1 STANDARD LIMB LEADS:

Bipolar recordings utilize standard limb lead configurations. Lead I has positive electrode

on the left arm, and the negative electrode on the right arm. In this and the other two limb

leads, an electrode on the right leg serves as a reference electrode for recording

purposes. In the lead II configuration, the positive electrode is on the left leg and the

negative electrode is on the right arm. Lead III has the positive electrode on the left leg

and the negative electrode on the left arm. These three bipolar limb leads roughly form an

equilateral triangle that is called Einthoven's triangle as shown in the figure.

Figure 4. Standard Limb Leads

11

2.3.2 3-AUGMENTED LIMB LEADS:

There are three augmented unipolar limb leads. These are termed unipolar leads because

there is a single positive electrode that is referenced against a combination of the other

limb electrodes. The positive electrodes for these augmented leads are located on the left

arm (aVL), the right arm (aVR), and the left leg (aVF). The aVL lead is at -30º relative to

the lead I axis; aVR is at -150º and aVF is at +90º.

2.3.3 6-PRECORDIAL LEADS:

There are six Precordial, unipolar chest leads. This configuration places six positive

electrodes on the surface of the chest over different regions of the heart in order to record

electrical activity in a plane perpendicular to the frontal plane.

The axis of a particular lead represents the viewpoint from which it looks at the heart.

 Figure 5. Axis Positions of Standard Leads

12

2.4 USES OF ECG

The various applications of ECG are as follows:

1. In Cardiac stress test, wherein the patient walks on a treadmill while connected to

an electrocardiogram machine

2. In Screening test, which identifies coronary artery disease prior to the onset of

symptoms

3. Preoperatively to rule out coronary artery disease

4. Provide information in the presence of metabolic alterations such has

hypercalcemia, hypocalcemia, hyperkalemia and hypokalemia

5. With known heart disease, monitor progression of the disease

6. It is used in evaluation of rhythmic disorders by observing electrocardiogram

7. It is the basic cardiologic test and is widely used to diagnose patients with suspected

or known heart disease

13

3. LITERATURE SURVEY

14

3.1 GENERAL DESCRIPTION

The Literature survey included the study of various components of an electrocardiogram

signal, their typical voltage values and time intervals. It was also necessary to study the

various components required for generation and processing of electrocardiogram signal.

The different algorithms for correlation and heart rate detection were studied and

evaluated.

Also the technicalities involved in use of Digital signal Processor, its interfacing with PC

and ECG generation circuit were studied.

Thus, the literature survey included:

• Study of ECG waves and its parameters

• Detailed study of components such as OP-AMP TL082, Analog MUX, LM7805/7905

• Detail study of the TMS320C6713 DSK

• Since we have developed our source codes using application software called Code

Composer Studio 3.1, study of this software was our basic requirement. This included

complete know of Code Composer Studio 3.1 with all its features.

• The processing part involves comparison of input ECG signal with the database and

heart rate detection of the input signal. Hence study of various correlation algorithms

and heart rate detection algorithms was included in our survey.

15

3.2 FUNCTIONAL BLOCK DIAGRAM

The following figure shows the functional block diagram of the ECG processing unit.

The functional block diagram consists of

• Sensing network

• Signal conditioning circuit

• Filter networks

• Digital Signal Processor

Figure 6. Functional Block Diagram

The figure shows a Functional block diagram of Electrocardiogram (ECG) generation

and processing. Here, the electrical activity of the heart is sensed and converted into

equivalent electrical quantity by transducers. The electrical output of the transducers is

applied to the input of signal conditioning circuit. Initially the signal is buffered to

increase current driving capacity and provide isolation between conditioning circuit and

16

the sensors. The buffered signal is then applied to a set of instrumentation amplifiers with

a gain of 40, where the difference signal is generated at the output called leads. We can

have three such leads, out which the second lead gives the most stronger ECG signal.

This three leads are then applied to the input of an analog multiplexer, out of which any

one is selected at the output of multiplexer depending upon the select lines input. The

selected lead (ECG) then passes through a set of filters to remove all the noise

components present in the signal. The signal is then amplified by an inverting amplifier

which provides a gain of 25. The output of the signal conditioning circuit is then applied

to DSP processor through Line In input. This signal is then digitized by a CODEC (i.e., a

Coder-Decoder which consists of ADC and DAC) at a sampling frequency of 8 kHz to

96 kHz. The TMS320CDSK runs a program which is written to calculate the heart rate,

compress the Electrocardiogram signal, display it and store in a particular file.

The various components used are:

 SENSORS

 BUFFERS

 INSTRUMENTATION AMPLIFIERS

 MULTIPLEXER

 FILTERS

 AMPLIFIER

 VOLTAGE REGULATORS

 TMS320C6713 DSK

17

3.3 COMPONENT DESCRIPTION

This topic provides the description about the various components used in the system with

their respective specifications such as input voltage range, operating temperature range

etc. Also the internal block diagram and pin configurations of various components are

provided here.

3.3.1 BUFFER

A Buffer is a device which acts a unity gain amplifier, i.e., it’s voltage gain is 1. A buffer

can be used in two modes: inverting and non-inverting. For a non-inverting buffer using

OP-AMP, the value of feedback resistor is RF = 0 as shown below:

Figure 7. Non-inverting buffer

Buffers are used to provide isolation between two stages. As it is an operational amplifier

its input impedance is very high and output impedance is very low. Also they increase the

current driving capacity of the circuit.

3.3.2 SENSORS

A sensor is a device which measures a physical quantity and converts it into a signal

which can be read by an instrument. The sensitivity of a sensor indicates how much the

sensor's output changes when the measured quantity changes. Sensors measure the

electric current that moves through the body with the help of electrodes attached to the

skin.

18

Figure 8. ECG sensors

The ECG tabs used are as shown below:

While using sensors it must be ensured that:

1. The ground lead or reference lead (black) on the body is connected before connecting

other leads.

2. ECG sensor should not be placed in water or other liquids.

3. The main cause of problem with the sensor is a poor connection, either between the

tabs and the skin or between the clips and the tabs. Hence it must be ensured that the

patient is seated or lying down and is relaxed.

3.3.3 MULTIPLEXER

A multiplexer is a device which has many inputs and one output as shown in the figure.

Depending upon the select input one of the input lines is connected to the output line. The

figure shows an 8:1 multiplexer which has eight input lines (Y0 – Y7) and one output line

(Z). Also there are three select lines used (A0 A1 & A2) for selecting any one out of the

19

eight inputs. There is one control input to the IC called Enable input (E_Bar) which is an

active low input. When E_Bar=0, the multiplexer works normally and when E_Bar=1 the

Multiplexer IC is disabled and the output is tri-stated independent of select inputs.

Figure 9. IC T4051B Pin Configuration

VDD and VSS are the supply voltage Connections for the digital control Inputs (A0 to A2,

and E). The VDD to VSS range is 3 to 15 V. The analog inputs/outputs (Y0 toY7 and Z) can

swing between VDD as a positive limit and VEE as a negative limit. VDD and VEE may not

exceed 15 V. For operation as a digital Multiplexer / demultiplexer, VEE is Connected to

VSS (typically ground).

The truth table of the 8:1 multiplexer is given below Here, H indicates High state, L indicates

low state, Y0 to Y7 are independent inputs and E is Enable input.

INPUTS Channel

ON E A2 A1 A0

L L L L Y0-Z

L L L H Y1-Z

L L H L Y2-Z

L L H H Y3-Z

L H L L Y4-Z

L H L H Y5-Z

L H H L Y6-Z

L H H H Y7-Z

H X X X None

Figure 10. 8:1 Multiplexer Truth Table

20

3.3.4 FILTERS

A filter is a device used to reject the unwanted signal from the input. In a measurement

system, it is seldom that the transducer used measures the measurand precisely and

presents the information in a standard form eliminating the need for further filtering and

analysis. Excepting for simple measurements, the measurement engineer soon finds that

for high accuracy the main factors the must be considered are signal to noise ratio,

response time and the bandwidth over which the measurements are desired. Among these

the signal to noise ratio is perhaps the most important parameter that needs to be

considered and the use of signal filters become s a necessity when low measurements or

high resolutions measurements are attempted. The availability of operational amplifiers

in the integrated form has changed the situation significantly, leading to emergence of

“active filters”. Today, a majority of low frequency filters are necessarily of these types,

particularly for frequencies below about 100 kHz. The special advantage of the active

circuitry for use in low-frequency filters is the interesting fact that inductors can be

totally avoided. In addition, active capacitance multiplication enables use of capacitors of

low practical values to be used even for cut-off frequencies down to fraction of one hertz.

However, due to the limited gain bandwidth products of IC s and their effect on the filter

characteristics, and due to the advantages of the inductor in the high frequency range,

passive filters are preferred for frequencies above few kilohertz.

The general classification of filters are, Low pass filter, High pass filter, band-pass filter,

and band-rejection filters types lend themselves to several subclasses, depending on the

order of the filter.

21

3.3.4.1 Low Pass Filter

A low-pass filter is a filter that passes low-frequency signals but attenuates signals with

frequencies higher than the cutoff frequency. It is also called as high-cut filter, or treble

cut filter when used in audio applications. An ideal low-pass filter completely eliminates

all frequencies above the cut-off frequency while passing those below unchanged. The

transition region present in practical filters does not exist in an ideal filter. An ideal low-

pass filter can be realized mathematically by multiplying a signal by the rectangular

function in the frequency domain or, equivalently, convolution with a sinc function in the

time domain.

Real filters for real-time applications approximate the ideal filter by truncating and

windowing the infinite impulse response to make a finite impulse response; applying that

filter requires delaying the signal for a moderate period of time. This delay is manifested

as phase shift. Greater accuracy in approximation requires a longer delay.

The following figure shows a low-pass electronic filter realized by an RC circuit. An OP-

AMP IC TL082P is used for construction of filter.

Figure 11. Low Pass Filter

The cut-off frequency (in Hertz) is determined by the time constant:

22

Where: fc = cut-off frequency of low pass filter

 R = value of resistor used

 C = value of capacitor used

The frequency response of a first order filter is as shown below:

Figure 12 Frequency response of low pass filter

3.3.4.2 High Pass Filter

A high-pass filter is a filter that passes high frequencies well, but attenuates frequencies

lower than the cutoff frequency. The actual amount of attenuation for each frequency

varies from filter to filter. It is also called a low-cut filter; the terms bass-cut filter or

rumble filter are also used in audio applications. The simplest electronic high-pass filter

23

consists of a capacitor in series with the signal path in conjunction with a resistor in

parallel with the signal path. The resistance times the capacitance (R×C) is the time

constant (τ); it is inversely proportional to the cutoff frequency, at which the output

power is half the input (−3 dB):

Where f is in hertz, τ is in seconds, R is in ohms, and C is in farads.

The following figure shows the circuit diagram for high pass filter implemented using

OP-AMP IC TL082P

Figure 13. A Passive analog first order high pass filter realized by RC circuit

The frequency response of a high pass filter is as shown below:

24

Figure 14. frequency response of high pass filter

3.3.4.3 Notch Filter

In signal processing, a band-stop filter or band-rejection filter is a filter that passes most

frequencies unaltered, but attenuates those in a specific range to very low levels. It is the opposite

of a band-pass filter. A notch filter is a band-stop filter with a narrow stop band and a high Q

factor. Notch filters are used in instrument amplifier to reduce or prevent feedback, while having

little noticeable effect on the rest of the frequency spectrum. Other names include 'band limit

filter', 'T-notch filter', 'band-elimination filter', and 'band-reject filter'

The circuit diagram for Notch filter is as shown below:

25

Figure 15. Notch Filter

The frequency response of a notch filter is as shown below:

Figure 16. Frequency response of a notch filter

26

3.3.5 TL082 OPERATIONAL AMPLIFIER

The Operational amplifiers are low cost, high speed, dual JFET input operational

amplifiers with an internally trimmed input offset voltage (BI-FET technology). They

require low supply current yet maintain a large gain bandwidth product and fast slew rate.

In addition, well matched high voltage JFET input devices provide very low input bias

and offset currents. The TL082 is pin compatible with the standard LM1558 allowing

designers to immediately upgrade the overall performance of existing LM1558 and most

LM358 designs. These amplifiers may be used in applications such as high speed

integrators, fast D/A converters, sample and hold circuits and many other circuits

requiring low input offset voltage, low input bias current, high input impedance, high

slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

The pin configuration of the op-amp is as shown in the figure above. The TL082 IC is an

8-Pin DIP Package IC. Each IC contains two op-amps within it as shown.

Figure 17. OP-AMP connection diagram

Precautions should be taken to ensure that the power supply for the integrated circuit

never becomes reversed in polarity or that the unit is not inadvertently installed

backwards in a socket as an unlimited current surge through the resulting forward diode

within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op-amps they do not

require special handling. As with most amplifiers, care should be taken with lead dress,

component placement and supply decoupling in order to ensure stability. For example,

resistors from the output to an input should be placed with the body close to the input to

27

minimize “pick-up” and maximize the frequency of the feedback pole by minimizing the

capacitance from the input to ground.

The internal schematic of the TL082 IC is shown below:

Figure 18. Internal Schematic of IC TL082B

These devices are op amps with an internally trimmed input offset voltage and JFET

input devices (BI-FET II). These JFET’s have large reverse breakdown voltages from

gate to source and drain eliminating the need for clamps across the inputs. Therefore,

large differential input voltages can easily be accommodated without a large increase in

input current. The maximum differential input voltage is independent of the supply

voltages. However, neither of the input voltages should be allowed to exceed the negative

supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the

phase to the output and force the amplifier output to the corresponding high or low state.

Exceeding the negative common-mode limit on both inputs will force the amplifier

output to a high state. In neither case does a latch occur since the rising input back within

28

the common-mode range again puts the input stage and thus the amplifier in a normal

operating mode. Each amplifier is individually biased by a zener reference which allows

normal circuit operation on ±6V power supplies. Supply voltages less than these may

result in lower gain bandwidth and slew rate.

The features of OP-AMP TL082B are listed below:

 Internally trimmed offset voltage: 15mV

 Low input bias current: 50 pA

 Wide gain bandwidth: 4MHZ

 High slew rate: 13 V/ µs

 Low supply current: 3.6mA

 High input impedance: 1012 Ω

 Low total harmonic distortion Av = 10: <0.02%

 RL = 10k, Vo = 20 Vp-p

 BW = 20HZ – 20KHZ

 Low 1/f noise corner: 50 HZ

 Fast setting time to 0.01%: 2 µs

29

The Specifications for OP-AMP IC TL082P are as given below:

Symbol Parameter Conditions

TL082
Units

 Min Typ Max

VOS Input offset voltage RS = 10k,
T = 25 C 5 15 mV

Ios Input offset current TJ = 25 C
TJ < 25 C 25 200

4
pA
nA

IB Input Bias Current Tj = 25 C
Tj < 70 C 50 400

8
pA
nA

Rin Input resistance Tj = 25 C 1012 Ω

AVOL Large signal voltage
gain

VS = + 15 V, TA = 25 C
VO = + 10 V, RL = 2kΩ

25
15 100 V/Mv

Vo Output voltage VS = + 15V , RL = 10kΩ +12 +13.5 V

CMRR Common Mode
Rejection Ratio RS <10kΩ 70 100 dB

VCM Input common mode
voltage range VS = + 15 V +11 +15

-12 V
V

PSRR Supply voltage
rejection ratio VS = +6 to 15 V 70 100 dB

IS Supply current 3.6 5.6 mA

SR Slew Rate VS = + 15 V, TA = 25 C 8 13 V/µs

GBW Gain Bandwidth
Product VS = + 15 V, TA = 25 C 4 MHz

en
Equivalent input noise

voltage
 TA = 25 C, Rs = 100Ω

f = 1kHz 25 nV/√Hz

 in
 Equivalent input noise

current TJ = 25 C, f = 1kHz 0.01 pA/√Hz

Figure 19. OP-AMP IC TL082P specifications

3.3.6 Inverting and Non-Inverting Amplifier

An Inverting amplifier using op-amp is used to invert and amplify the signal applied at its

input. The circuit using op-amp in inverting mode configuration is as shown below:

Figure 20. Inverting Amplifier

30

The output voltage is given by the equation:

Vout = -Vin(Rf/R1)

A third resistor, of value, Rf || Rin = Rf Rin / (Rf + Rin) added between the non-inverting

input and ground, minimizes errors due to input bias currents.

A Non-Inverting amplifier using op-amp is used to amplify the signal applied at its input.

The circuit using op-amp in non-inverting mode configuration is as shown below:

Figure 21. Non-inverting amplifier

The output voltage is given by the equation:

A third resistor, of value R1 || R2, added between the Vin source and the non-inverting

input, while not necessary, minimizes errors due to input bias currents.

31

3.3.7 VOLTAGE REGULATORS
A regulator IC 7805 is used as a voltage positive voltage regulator and IC 7905 is used as

a negative voltage regulator.

3.3.7.1 IC 7905 Regulator
The 79xx (also sometimes known as LM79xx) series of devices is a family of self-

contained fixed linear voltage regulator integrated circuits. The 79xx family is a very

popular choice for many electronic circuits which require a regulated power supply, due

to their ease of use and relative cheapness. When specifying individual ICs within this

family, the xx is replaced with a two-digit number, which indicates the output voltage the

particular device is designed to provide (for example, the 7905 has a 5 volt output, while

the 7912 produces 12 volts). The 79xx lines are negative voltage regulators, meaning that

they are designed to produce a voltage that is positive relative to a common ground.

There is a related line of 78xx devices which are complementary positive voltage

regulators. 79xx and 78xx ICs can be used in combination to provide both negative and

positive supply voltages in the same circuit, if necessary.79xx ICs have three terminals

and are most commonly found in the TO220 form factor, although smaller surface-mount

and larger TO3 packages are also available from some manufacturers. These devices

typically support an input voltage which can be anywhere from a couple of volts over the

intended output voltage, up to a maximum of -35 or -40 volts, and can typically provide

up to around 1 or 1.5 amps of current (though smaller or larger packages may have a

lower or higher current rating). The figure below shows 7905 IC in a fixed negative

regulator configuration.

Figure 22. 7905 fixed voltage configuration

32

As shown in the figure above IC 7905 regulator uses two decoupling capacitors C1 and C2. The

capacitor C1 is required only if regulator is separated from rectifier filter. The values of two capacitors

are selected appropriately; also both capacitors C1 and C2 should be low E.S.R. types such as solid

Tantalum. If aluminum electrolytic is used, at least 10 times Values shown should be selected.

The features of IC 7905 are as follows:

• Excellent Line and Load regulation

• Fold back current limiting

• Thermal overload protection

• Voltages available: -5V, -12V, -15V

• Available in surface mount package

The parameters specifications for IC 7905 are

3.3.8 TMS320C6713

Texas Instruments TMS320C6713 DSK kit includes DSK board with TMS320C6713

DSP chip, USB cable, Power supply, CD with Code composer studio IDE (v3.1) and

electronic documentation, DSK technical reference manual, DSK quick start installation

guide, Matlab/Simulink trial CD and other promotional material. The 225 MHz

TMS320C6713 floating point DSP kit has AIC23 stereo codec (ADC and DAC) and is

ideal for audio as well as real-time applications. It samples at the rate of 8 kHz - 96 kHz.

It has a 16 MB dynamic RAM, 512kB non-volatile FLASH memory, General purpose

I/O, 4 LEDs, 4 DIP switches, USB interface to PC, Enhanced Harvard Architecture, Rich

Addressing modes, Two general purpose Register files (A0-A15 & B0-B15), 32/64- Bit

Data Word, Rich Instruction set, Eight 32-Bit Instructions/Cycle, 32/64-Bit Data Word,

4.4- 6.7 ns Instruction Cycle Time, Rich Peripheral Set, Optimized for Audio and Highly

Optimized C/C++ Compiler. The block diagram of the processor is as shown below:

33

The DSP on the 6713 DSK interfaces to on-board peripherals through a 32-bit wide

EMIF (External Memory Interface).The SDRAM, Flash and CPLD are all connected to

the bus.

EMIF signals are also used for daughter cards. The DSP interfaces to analog audio

signals through an on-board AIC23 codec and four 3.5 mm audio jacks (microphone

input, line input, line output, and headphone output). The codec can select the

microphone or the line input as the active input. The analog output is sent to both the line

out and headphone out connectors. The line out has a fixed gain, while the headphone out

allows for an adjustable gain connectors. A programmable logic device called a CPLD

(Complex Programmable Logic Device) is used to implement logic that ties the board

components together. The DSK includes 4 LEDs and a 4 position DIP switch which

allow for interactive feedback.

3.3.9 PATTERN CORRELATION

The technique is based on the hypothesis that those ECGs whose signal waveforms are in

best agreement in their leads can in all probability be assigned to the same diagnosis. The

Figure 23. TMS320C6713 DSK internal block diagram

34

assessment of the similarity of the ECG signal patterns of equal ECG leads is carried out

by calculation of correlation functions whose function values are formed from the

correlation coefficients K:

In dependence on the temporal shift of the signal window with the time series x,,

(unknown ECG) and y,, (reference ECG) - with 1 5 n 2 N. N = number of function values

– the correlation functions form maxima according to the periodicity of the ECG if the

patterns are similar. Figs. 1 and 2 show two examples of correlation functions in the case

of similarity of the ECG beats as well as in the case of strong differences of the

waveforms from one another. According to the periodicity of the ECG signals, the

correlation functions are also periodical. The different maxima are due to the variance

between the ECG beats.The examples show that it is permissible for ECG without

disrhythmias or strong anomalies between the beats to limit the correlation analysis to

only one beat typical of the ECG in question.

In pattern correlation, the unknown ECG is compared with the ECGs of the database in

all 3 leads. The result of each reference ECG comparison is a 3-dimensional vector

whose elements give the correlation values for the respective lead. The range of values

corresponds to the definition range of the correlation coefficient K with -1 <K< +l. For

the further considerations, only the positive correlations are taken into account. The

correlation measure 100% (K=l) thus means identity of the patterns. A correlation

statement towards K=O indicates completely different signal patterns in the waveforms

of the lead considered.

35

Figure 24. Correlation Patterns

It is the aim of classification to summarily assess the agreement of the lead-related

correlation results obtained from the comparison of the unknown ECG with any reference

ECG. It must be taken into consideration that the result of two ECG pattern comparisons

may be multivariable and available as a 3-dimensional vector of the correlation results of

the individual leads and the number of comparisons with the reference ECG may be

36

very great. To solve this task, a modified distance technique of the multivariate signal

analysis is used. As the method can be applied independently of the dimension of the

vector of the correlation results and thus independently of the number of leads to be taken

into account, the classification step is illustrated by the example of the dimension n = 3.

Figure 25. Graphical interpretation of the multichannel correlation results

Fig. 3 shows a three-dimensional Cartesian system of coordinates which is formed by the

correlation results of three ECG leads. According to the used range of values for the

correlation coefficient K, the axial ranges from 0 to 1 are obtained. Any comparison of

signal patterns of the unknown ECG with those of an ECG from the database leads to a

point inside the cube formed for the three dimensional case If the signal patterns are

dentical in all leads (K = I), point Po (l,l,l) will be obtained. The length of the diagonal in

this cube represents the maximum similarity measure in the case of three leads. All other

points are associated with vectors whose magnitude are smaller compared with the length

of the diagonal and thus indicate less similarity of the signal patterns. When all leads of

the 12-channel ECG are allowed for, the dimension m = 12 is obtained. The normalized

modulus vector as similarity measure then reads

37

A second value should allow for the uniformity of the correlations of the leads. This is

possible by indicating the angle cp or the distance b:

The value b = 0 means here that equal correlation values were calculated for all leads.

This does not allow conclusions to be drawn for the similarity of the signal patterns of all

leads. It is, however, possible, for example, to take in the influence of noise-affected

signals, or other technical disturbances in a lead, on the overall result. The two values r

and b can be calculated for any comparison between an ECG of unknown diagnosis with

the reference ECG.

3.3.10 HEART RATE DETECTION

The heart rate of the patient is the one of the most important parameter for analysis of

cardiac disorders of a patient. An ECG wave consisting of P wave, QRS complex, S wave

and T wave is generated for every heart beat. The number of heart beats per minute can

be measured by measuring number of QRS complexes that were observed in one minute

duration. However for practical purposes the ECG wave is not observed for entire one

38

minute duration. Instead it is observed for a 10 second duration and then the heart rate is

calculated using 10 second rule or a rule of 300.

Rule of 300

Here 5 big boxes represents time duration of 1 second. To measure heart rate, count the

number of such big boxes between consecutive QRS complexes and divide the number of

big boxes by 300. The result will be approximately equal to heart rate. In the above

figure, there are 6 boxes between consecutive QRS complexes. Therefore the heart rate is

given by

HEART RATE = 300 / 6 = 50 BPM

10 Second Rule

As most ECGs record 10 seconds of rhythm per page, one can simply count the number

Figure 24 ECG wave 10 second rule

Figure 23 An ECG wave

39

of beats present on the EKG and multiply by 6 to get the number of beats per 60 seconds.

This method works well for irregular rhythms. In the above figure there are 14 QRS

complexes in the duration of 10 seconds. Hence the heart rate is given by

HEART RATE = 14 X 6 = 84 BPM

40

4. HARDWARE IMPLEMENTATION

41

4.1 CIRCUIT DIAGRAM
The following figure shows the detailed circuit diagram for ECG signal conditioning.

Figure 25 ECG signal conditioning circuit

42

4.2 WORKING

The Electrocardiogram signal is sensed using sensors connected to Human body. The

sensors were connected to Right Arm (RA), Left Arm (LA), Left Leg (LL) and Right Leg

(RL) with RL as a reference. The ECG signals obtained at input are very weak signals

with a voltage in the range of mill volts. So initially the input signals from body sensors

are buffered to increase current driving capacity. The buffered signals are applied to

Instrumentation Amplifiers to generate a difference signal with RL signal as a reference.

The Instrumentation Amplifier used in the circuit is a 3 OP-Amp instrumentation

amplifier which provides a gain of 40. There are three such instrumentation amplifiers in

the circuit for obtaining leads I, II and III simultaneously. Out of the three leads, the lead

II connected to Left Arm (LA), Left Leg (LL) and Right Leg (RL) is the strongest lead.

An analog Multiplexer TC4051BP is used to select one lead out of the three leads

obtained at the output of three instrumentation amplifier. The lead selected by the

Multiplexer is then applied as an input to set of Filters. Initially, the signal passes through

a High Pass Filter (HPF). The high pass filter filters out the high frequency noise and

Electromagnetic Interference from the Electrocardiogram signal. It is also used to remove

Baseline Wandering caused by factors such as the instability of the electrodes, the change

in electrode-skin interface conductivity, the modulating effect of subject respiration, etc.

The filtered signal is then passed through a Low Pass Filter (LPF). The rejection of DC

and very low-frequency components has a main role to remove the noise from body

electrodes and related electro-chemical potentials. It is ensured that the Low Pass Filter

does not remove the significant low-frequency components of the ECG signal. This

filtered Electrocardiogram signal is finally sent to a notch filter to remove 50Hz noise due

to interference from power line. The 50 Hz power line interference frequency is within

the useful bandwidth of Electrocardiogram signal; hence the 50 Hz rejection filter is a

very narrow filter. The ECG signal is now free from major sources of interference. This

signal is then amplified using a non-inverting amplifier, which provides a gain of 25. The

output of non-inverting amplifier is up to 1.2 volts and is sent to line input of

TMS320C6713 DSK for further processing. The overall gain provided by the circuit is 40

(by Instrumentation amplifier) X 25 (by non-inverting amplifier) = 1000.

43

4.3 COMPONENT LIST

R1 – 100 Ω; R2,3,4 – 10 MΩ; R6,8,9,13,15,16,20,22,23,42 – 10 KΩ

R5,7,12,14,19,21 – 120 KΩ; R10,17,24 – 20 KΩ

R28,30 – 20 KΩ; R27 – 1 MΩ; R29 – 56 KΩ;

R26,31 – 390 KΩ; R34,48 – 27 KΩ;

R35,46 – 4.8 KΩ; R36 – 12 KΩ;

R43 – 3.9 KΩ; R37 – 27 KΩ;

R38 – 100 KΩ; R39,40 – 1 KΩ;

R41 – 15KΩ;

C1 – 220 nF/100V

C2 – 100nF/63V

C3 – 2000nF

C4,7 – 470nF

C5,6 – 100nF

C8,9,410,11 - 10µF/63V

U1 – LM7805 (3 Pin Voltage Regulator)

U2 – LM7905 (3 Pin Voltage Regulator)

U3 – TL082CN

U4 – TC4051BP

U5 – TMS320C6713 DSK

44

5. SOFTWARE IMPLEMENTATION

45

5.1 OVERVIEW OF CODE COMPOSER 3.1

Code Composer Studio (CCS) allows us to write a program in C language that can be used to

initialize the DSK. Through CCS, we can initialize various ports and registers of the DSK. Code

Composer provides a rich debugging environment that allows stepping through the code, set

breakpoints, and examining the registers as code is getting executed.

The Code Composer Studio (CCS) application provides an integrated environment with the

capabilities like Integrated development environment with an editor, debugger, project manager,

and profiler, C/C++ compiler, assembly optimizer and linker, Simulator, Real-time operating

system (DSP/BIOS™), Real-Time Data Exchange (RTDX™) between the Host and Target, and

Real-time analysis and data visualization.

CCStudio integrated development environment includes host tools and target software that

slashes development time and optimizes the performance for all real-time embedded DSP

applications.

Some of the Code Composer Studio’s host side tools include TMS320 DSPs and OMAP Code,

Drag and Drop CCStudio setup utility, Component manager support for multiple versions of

DSP/BIOS and code generation tools within the IDE, Source Code Debugger common interface

for both simulator and emulator targets, Connect/Disconnect; robust, resilient host to target

connection, Application Code Tuning Dashboard, RTDX ™ data transfer for real time data

exchange between host and target, Data Converter Plug-in to auto configure support for Texas

Instruments Mixed Signal products, Quick Start tutorials and Help.

Code Composer Studio’s target software includes DSP/BIOS ™ Kernel for the TMS320 DSPs,

TMS320 DSP Algorithm Standard to enable software reuse, Chip Support Libraries to simplify

device configuration, and DSP Libraries for optimum DSP functionality.

46

5.2 ALGORITHMS

INITIALISATION

a) Initialize DSK codec aic23 using appropriate header file.

b) Initialize the buffers for storing the original and compressed ECG data

c) Set the gain for input samples from aic23 line input

d) Set the sampling frequency of the ADC to minimum (8kHz)

DATA ACQUISITION

a) Read the input from the line input

b) The sampling frequency required for ECG is less than the sampling frequency of codec

(about 400 Hz). Hence scale down the sampling rate by appropriate value (20)

c) Store these samples in a .dat file

d) Convert the dat files into header files.

CORRELATION

a) Initialize an array k to 0. Initialize a variable n to 0.

b) Using the array elements of the database as well as input files calculate the values of

array k using the formula given in the literature survey

c) Also use an if statement to find out the maximum value of the entire array

d) Repeat the above procedure for all the lead arrays

e) Use the maximum values of all the arrays for computing r, b and phi

f) Display the values of r, b and phi

HEART RATE CALCULATION

a) Store the input .dat file into an array called ECG

b) Set the threshold value to be 80% of peak value of ECG sample.

c) Increment heart rate each time ECG sample value rises above threshold value

d) Continue this procedure for 10 seconds

e) At the end of 10 seconds, actual heart rate is obtained by multiplying the heart rate value

obtained above by 6.

47

6. RESULT ANAYSIS AND CONCLUSION

48

6.1 RESULT ANALYSIS

1. The hardware circuit designed to amplify the ECG signal provided a gain of 1000 and

the output ECG voltage was observed to be up to 2V.

2. The noise due to baseline wandering and contact electrodes was successfully removed

by using High Pass and Low Pass filters respectively.

3. Noise corresponding to 50 Hz power line frequency was still observed to be present

in the signal.

4. The correlation program classifies the input ECG signal into normal, bradycardia and

tachycardia signals by correlating the input signal with signals from the database and

determines the signal according to the best match.

5. The program was tried with 10 input files with different heart conditions. The

program could successfully identify 9 input conditions correctly. Thus the code for

correlation gives around 90% accuracy.

6. The heart rate of the different patients varies from 30 to 110. However, since the

calculation were made by multiplying the QRS complexes observed in 10 sec by 6,

the heart rate always displayed as a multiple of 6. Hence, minor changes in heart rate

were undetected.

The following figure shows the ECG signal displayed using the graphical display feature

of Code Composer Studio v3.1

Figure 26. ECG displayed using CCS v3.1

49

6.2 CONCLUSION

Thus, ECG correlation was successfully implemented DSP processing kit TMS320C6713

DSK. The ECG signal was generated using standard limb leads for obtaining normal

signals and an ECG signal simulator was used for generating abnormal ECG signals. The

signal was stored and correlated using the pattern comparison algorithm and an accuracy

of 90% was obtained. The heart rate was successfully measured and displayed.

50

7. FUTURE SCOPE

51

7.1 FUTURE SCOPE

The interactive possibilities of this project are intended to enable the doctor - in contrast

to conventional methods of computer aided ECG interpretation - to separately evaluate

the results including the patient information available. The result of the signal pattern

comparison is not a diagnostic statement which can be accepted or rejected but a

probability statement on the basis of similar cases of an ECG database. Accordingly, the

quality of this database as regards the extent and the validation is a decisive prerequisite

for the function of the technique presented.

The database can be extended for other abnormalities without any change in the

algorithm. The procedure followed for the processing of electrocardiogram signal can be

extended for processing of other biomedical signal like electroencephalogram as well as

non-biomedical signals. A graphical user interface (GUI) can be built to enhance the

flexibility and user friendliness of processing system.

52

APPENDIX

53

APPENDIX I – CCS CODE FOR BIOMEDICAL SIGNAL

PROCESSING

/*
 * ======== DSK6713_loop.c ========
 *
 * This example uses the AIC23 codec module of the 6713 DSK Board Support
 * Library to process left and right samples from input to output without
 * modification. Two 256 point buffers are included so that captured signal
 * samples can be observed using the CCS plotting tools.
 */

/*
 * DSP/BIOS is configured using the DSP/BIOS configuration tool. Settings
 * for this example are stored in a configuration file called tone.cdb. At
 * compile time, Code Composer will auto-generate DSP/BIOS related files
 * based on these settings. A header file called DSK6713_loopcfg.h contains the
 * results of the autogeneration and must be included for proper operation.
 * The name of the file is taken from DSK6713_loop(.cdb) and adding cfg.h.
 */

// Include header file auto-generated by the configuration tool
#include "DSK6713_loopcfg.h"

/*
 * The 6713 DSK Board Support Library is divided into several modules, each
 * of which has its own include file. The file dsk6713.h must be included
 * in every program that uses the BSL. This example also includes
 * dsk6713_aic23.h because it uses the AIC23 codec module.
 */

/*
 * Note the BSL has defined custom data types in csl_stdinc.h,
 * popular among DSP developers:
 *
 * typedef unsigned char Uint8;
 * typedef unsigned short Uint16;
 * typedef unsigned int Uint32;
 * typedef unsigned long Uint40;
 * typedef char Int8;
 * typedef short Int16;
 * typedef int Int32;
 * typedef long Int40;

54

 *
 */

#include "dsk6713.h"
#include "dsk6713_aic23.h"
#include "stdio.h"
#include "math.h"
#include "string.h"

#include "input11.h"
#include "input12.h"
#include "input13.h"

#include "input21.h"
#include "input22.h"
#include "input23.h"

#include "input31.h"
#include "input32.h"
#include "input33.h"
/*
#include "input41.h"
#include "input42.h"
#include "input43.h"
*/
#include "input51.h"
#include "input52.h"
#include "input53.h"

#include "input61.h"
#include "input62.h"
#include "input63.h"

#include "input71.h"
#include "input72.h"
#include "input73.h"

#include "input81.h"
#include "input82.h"
#include "input83.h"

#include "input91.h"
#include "input92.h"
#include "input93.h"

#include "input101.h"

55

#include "input102.h"
#include "input103.h"

#include "normal11.h"
#include "normal12.h"
#include "normal13.h"
#include "normal21.h"
#include "normal22.h"
#include "normal23.h"
#include "normal31.h"
#include "normal32.h"
#include "normal33.h"

#include "brady11.h"
#include "brady12.h"
#include "brady13.h"
#include "brady21.h"
#include "brady22.h"
#include "brady23.h"
#include "brady31.h"
#include "brady32.h"
#include "brady33.h"

#include "tachy11.h"
#include "tachy12.h"
#include "tachy13.h"
#include "tachy21.h"
#include "tachy22.h"
#include "tachy23.h"
#include "tachy31.h"
#include "tachy32.h"
#include "tachy33.h"

int rand_int(void);

/* Codec configuration settings */
DSK6713_AIC23_Config config = { \
 0x0017, /* 0 DSK6713_AIC23_LEFTINVOL Left line input channel volume */ \
 0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume */\
 0x01f9, /* 2 DSK6713_AIC23_LEFTHPVOL Left channel headphone volume */ \
 0x01f9, /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */ \

56

 0x0011, /* 4 DSK6713_AIC23_ANAPATH Analog audio path control */ \
 0x0000, /* 5 DSK6713_AIC23_DIGPATH Digital audio path control */ \
 0x0000, /* 6 DSK6713_AIC23_POWERDOWN Power down control */ \
 0x0043, /* 7 DSK6713_AIC23_DIGIF Digital audio interface format */ \
 0x0081, /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */ \
 0x0001 /* 9 DSK6713_AIC23_DIGACT Digital interface activation */ \
};

// Global data buffers

/*
 * main() - Main code routine, initializes BSL and connects input samples
 * to output samples in an infinite while loop.
 */

//#pragma DATA_SECTION(phiT5,".EXTRAM")
//#pragma DATA_SECTION(phiB1,".EXTRAM")
//#pragma DATA_SECTION(phiB2,".EXTRAM")
//#pragma DATA_SECTION(phiB3,".EXTRAM")
//#pragma DATA_SECTION(phiB4,".EXTRAM")
//#pragma DATA_SECTION(phiB5,".EXTRAM")
//#pragma DATA_SECTION(k44,".EXTRAM")
//#pragma DATA_SECTION(k45,".EXTRAM")

float
k1[4800],k2[4800],k3[4800],k4[4800],k5[4800],k6[4800],k7[4800],k8[4800],k9[4800],k
10[4800];
float
k16[4800],k17[4800],k18[4800],k19[4800],k20[4800],k21[4800],k22[4800],k23[4800],k
24[4800];
float
k31[4800],k32[4800],k33[4800],k34[4800],k35[4800],k36[4800],k37[4800],k38[4800],k
39[4800];
int s1[4800],s2[4800],s3[4800],d1,d2,d3;
int ECG[4800];

int HEART_RATE = 0,flag = 0,MAX=0,m=0,n=0,i = 0;
float THRESH = 0;

void main()

57

{
float
RN1,RN2,RN3,RT1,RT2,RT3,RB1,RB2,RB3,BN1,BN2,BN3,BT1,BT2,BT3,BB1,BB2,
BB3,phiN1,phiN2,phiN3,phiT1,phiT2,phiT3,phiB1,phiB2,phiB3,BN,BB,BT;

float
maxnormal11=0,maxnormal12=0,maxnormal13=0,maxnormal21=0,maxnormal22=0,ma
xnormal23=0,maxnormal31=0,maxnormal32=0,maxnormal33=0;
float
maxtachy11=0,maxtachy12=0,maxtachy13=0,maxtachy21=0,maxtachy22=0,maxtachy23
=0,maxtachy31=0,maxtachy32=0,maxtachy33=0;
float
maxbrady11=0,maxbrady12=0,maxbrady13=0,maxbrady21=0,maxbrady22=0,maxbrady
23=0,maxbrady31=0,maxbrady32=0,maxbrady33=0;

long double a=0,b=0,c=0,d=0,e=0;

/* Initialize the board support library, must be called first */
 DSK6713_init();

printf("enter the number of the signal that you want to input: input11, input21, input31,
input51, input61, input71, input81, input91, input101");
scanf("%d",&d1);
switch(d1)
{
case 11:
{
for(i=0;i<4800;i++)
s1[i]=input11[i];
break;
}
case 21:
{
for(i=0;i<4800;i++)
s1[i]=input21[i];
break;
}
case 31:
{
for(i=0;i<4800;i++)
s1[i]=input31[i];
break;
}

58

case 51:
{
for(i=0;i<4800;i++)
s1[i]=input51[i];
break;
}
case 61:
{
for(i=0;i<4800;i++)
s1[i]=input61[i];
break;
}
case 71:
{
for(i=0;i<4800;i++)
s1[i]=input71[i];
break;
}
case 81:
{
for(i=0;i<4800;i++)
s1[i]=input81[i];
break;
}
case 91:
{
for(i=0;i<4800;i++)
s1[i]=input91[i];
break;
}
case 101:
{
for(i=0;i<4800;i++)
s1[i]=input101[i];
break;
}
printf("invalid number");
}

printf("enter the number of the signal that you want to input: input12, input22, input32,
input52, input62, input72, input82, input92, input102");
scanf("%d",&d2);
switch(d2)
{
case 12:
{

59

for(i=0;i<4800;i++)
s2[i]=input12[i];
break;
}
case 22:
{
for(i=0;i<4800;i++)
s2[i]=input22[i];
break;
}
case 32:
{
for(i=0;i<4800;i++)
s2[i]=input32[i];
break;
}
case 52:
{
for(i=0;i<4800;i++)
s2[i]=input52[i];
break;
}
case 62:
{
for(i=0;i<4800;i++)
s2[i]=input62[i];
break;
}
case 72:
{
for(i=0;i<4800;i++)
s2[i]=input72[i];
break;
}
case 82:
{
for(i=0;i<4800;i++)
s2[i]=input82[i];
break;
}
case 92:
{
for(i=0;i<4800;i++)
s2[i]=input92[i];
break;
}

60

case 102:
{
for(i=0;i<4800;i++)
s2[i]=input102[i];
break;
}
printf("invalid number");
}

printf("enter the name of the signal that you want to input: input13, input23, input33,
input53, input63, input73, input83, input93, input103");
scanf("%d",&d3);
switch(d3)
{
case 13:
{
for(i=0;i<4800;i++)
s3[i]=input13[i];
break;
}
case 23:
{
for(i=0;i<4800;i++)
s3[i]=input23[i];
break;
}
case 33:
{
for(i=0;i<4800;i++)
s3[i]=input33[i];
break;
}
case 53:
{
for(i=0;i<4800;i++)
s3[i]=input53[i];
break;
}
case 63:
{
for(i=0;i<4800;i++)
s3[i]=input63[i];
break;
}
case 73:

61

{
for(i=0;i<4800;i++)
s3[i]=input73[i];
break;
}
case 83:
{
for(i=0;i<4800;i++)
s3[i]=input83[i];
break;
}
case 93:
{
for(i=0;i<4800;i++)
s3[i]=input93[i];
break;
}
case 103:
{
for(i=0;i<4800;i++)
s3[i]=input103[i];
break;
}
printf("invalid number");
}

 while(1)
 {

 // Read a 32 bit codec sample from the serial port.
 // The reads alternate between left and right channels.
 // The value read is held as a Uint32, but the valid data
 // is in a Int16 format in the 16 MSBs
 //while (!DSK6713_AIC23_read(hCodec, &xL));
 //while (!DSK6713_AIC23_read(hCodec, &xR));

 // Extract ECG samples in a 2000 byte buffer

 // Threshold

 if((s1[m]>MAX)&&(m<=800))

 {
 MAX=s1[m];
 THRESH=0.65*MAX;

62

 }

 // Heart Rate Detection
 if((s1[m]<THRESH)&&(s1[m-
1]>=THRESH)&&(flag==0)&&(m>800))
 {
 ++HEART_RATE;
 printf("\nHEART_RATE=%d",HEART_RATE);
 flag=200;
 }

 if(flag>0)
 flag--;

 if(m>4800)
 {
 HEART_RATE *=6;
 printf("\nHEART_RATE=%d",HEART_RATE);
 break;
 }
m++;

 //while (!DSK6713_AIC23_write(hCodec, xL));
 //while (!DSK6713_AIC23_write(hCodec, xR));

}

//normal11
a=0;
b=0;
c=0;
d=0;
e=0;
for(i=0;i<=4800-1;i++)
{
a+=normal11[i]*s1[i];
b+=normal11[i];
c+=s1[i];
d+=normal11[i]*normal11[i];
e+=s1[i]*s1[i];
k1[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

63

if(k1[i]>maxnormal11)
{
maxnormal11=k1[i];
}

}
printf("\nmaxnormal11=%f",maxnormal11);

//normal12
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=normal12[i]*s2[i];
b+=normal12[i];
c+=s2[i];
d+=normal12[i]*normal12[i];
e+=s2[i]*s2[i];
k2[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k2[i]>maxnormal12)
{
maxnormal12=k2[i];
}

}

printf("\nmaxnormal12=%f",maxnormal12);

//normal13
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=normal13[i]*s3[i];
b+=normal13[i];
c+=s3[i];

64

d+=normal13[i]*normal13[i];
e+=s3[i]*s3[i];
k3[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k3[i]>maxnormal13)
{
maxnormal13=k3[i];
}

}

printf("\nmaxnormal13=%f",maxnormal13);

//normal21
a=0;
b=0;
c=0;
d=0;
e=0;
for(i=0;i<=4800-1;i++)
{
a+=normal21[i]*s1[i];
b+=normal21[i];
c+=s1[i];
d+=normal21[i]*normal21[i];
e+=s1[i]*s1[i];
k4[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k4[i]>maxnormal21)
{
maxnormal21=k4[i];
}

}

printf("\nmaxnormal21=%f",maxnormal21);

//normal22
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)

65

{
a+=normal22[i]*s2[i];
b+=normal22[i];
c+=s2[i];
d+=normal22[i]*normal22[i];
e+=s2[i]*s2[i];
k5[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k5[i]>maxnormal22)
{
maxnormal22=k5[i];
}
}
printf("\nmaxnormal22=%f",maxnormal22);

//normal23
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=normal23[i]*s3[i];
b+=normal23[i];
c+=s3[i];
d+=normal23[i]*normal23[i];
e+=s3[i]*s3[i];
k6[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k6[i]>maxnormal23)
{
maxnormal23=k6[i];
}
}
printf("\nmaxnormal23=%f",maxnormal23);

//normal31
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)

66

{
a+=normal31[i]*s1[i];
b+=normal31[i];
c+=s1[i];
d+=normal31[i]*normal31[i];
e+=s1[i]*s1[i];
k7[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k7[i]>maxnormal31)
{
maxnormal31=k7[i];
}
}
printf("\nmaxnormal31=%f",maxnormal31);

//normal32
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=normal32[i]*s2[i];
b+=normal32[i];
c+=s2[i];
d+=normal32[i]*normal32[i];
e+=s2[i]*s2[i];
k8[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k8[i]>maxnormal32)
{
maxnormal32=k8[i];
}
}
printf("\nmaxnormal32=%f",maxnormal32);

//normal33
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)

67

{
a+=normal33[i]*s3[i];
b+=normal33[i];
c+=s3[i];
d+=normal33[i]*normal33[i];
e+=s3[i]*s3[i];
k9[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k9[i]>maxnormal33)
{
maxnormal33=k9[i];
}
}
printf("\nmaxnormal33=%f",maxnormal33);

//brady11
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=brady11[i]*s1[i];
b+=brady11[i];
c+=s1[i];
d+=brady11[i]*brady11[i];
e+=s1[i]*s1[i];
k16[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k16[i]>maxbrady11)
{
maxbrady11=k16[i];
}
}
printf("\nmaxbrady11=%f",maxbrady11);

//brady12

a=0;
b=0;
c=0;

68

d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=brady12[i]*s2[i];
b+=brady12[i];
c+=s2[i];
d+=brady12[i]*brady12[i];
e+=s2[i]*s2[i];
k17[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k17[i]>maxbrady12)
{
maxbrady12=k17[i];
}
}
printf("\nmaxbrady12=%f",maxbrady12);

//brady13

a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=brady13[i]*s3[i];
b+=brady13[i];
c+=s3[i];
d+=brady13[i]*brady13[i];
e+=s3[i]*s3[i];
k18[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k18[i]>maxbrady13)
{
maxbrady13=k18[i];
}
}
printf("\nmaxbrady13=%f",maxbrady13);

//brady 21
a=0;

69

b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=brady21[i]*s1[i];
b+=brady21[i];
c+=s1[i];
d+=brady21[i]*brady21[i];
e+=s1[i]*s1[i];
k19[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k19[i]>maxbrady21)
{
maxbrady21=k19[i];
}
}
printf("\nmaxbrady21=%f",maxbrady21);

//brady22
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=brady22[i]*s2[i];
b+=brady22[i];
c+=s2[i];
d+=brady22[i]*brady22[i];
e+=s2[i]*s2[i];
k20[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k20[i]>maxbrady22)
{
maxbrady22=k20[i];
}
}
printf("\nmaxbrady22=%f",maxbrady22);

70

//brady23
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=brady23[i]*s3[i];
b+=brady23[i];
c+=s3[i];
d+=brady23[i]*brady23[i];
e+=s3[i]*s3[i];
k21[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k21[i]>maxbrady23)
{
maxbrady23=k21[i];
}
}
printf("\nmaxbrady23=%f",maxbrady23);

//brady31
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=brady31[i]*s1[i];
b+=brady31[i];
c+=s1[i];
d+=brady31[i]*brady31[i];
e+=s1[i]*s1[i];
k22[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k22[i]>maxbrady31)
{
maxbrady31=k22[i];
}
}
printf("\nmaxbrady31=%f",maxbrady31);

71

//brady32
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=brady32[i]*s2[i];
b+=brady32[i];
c+=s2[i];
d+=brady32[i]*brady32[i];
e+=s2[i]*s2[i];
k23[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k23[i]>maxbrady32)
{
maxbrady32=k23[i];
}
}
printf("\nmaxbrady32=%f",maxbrady32);

//brady33
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=brady33[i]*s3[i];
b+=brady33[i];
c+=s3[i];
d+=brady33[i]*brady33[i];
e+=s3[i]*s3[i];
k24[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k24[i]>maxbrady33)
{
maxbrady33=k24[i];
}
}

72

printf("\nmaxbrady33=%f",maxbrady33);

//tachy11
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=tachy11[i]*s1[i];
b+=tachy11[i];
c+=s1[i];
d+=tachy11[i]*tachy11[i];
e+=s1[i]*s1[i];
k31[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));
if(k31[i]>maxtachy11)
{
maxtachy11=k31[i];
}
}
printf("\nmaxtachy11=%f",maxtachy11);

//tachy12
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=tachy12[i]*s2[i];
b+=tachy12[i];
c+=s2[i];
d+=tachy12[i]*tachy12[i];
e+=s2[i]*s2[i];
k32[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k32[i]>maxtachy12)
{

73

maxtachy12=k32[i];
}
}
printf("\nmaxtachy12=%f",maxtachy12);

//tachy13
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=tachy13[i]*s3[i];
b+=tachy13[i];
c+=s3[i];
d+=tachy13[i]*tachy13[i];
e+=s3[i]*s3[i];
k33[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k33[i]>maxtachy13)
{
maxtachy13=k33[i];
}
}

printf("\nmaxtachy13=%f",maxtachy13);

//tachy21

a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=tachy21[i]*s1[i];
b+=tachy21[i];
c+=s1[i];
d+=tachy21[i]*tachy21[i];
e+=s1[i]*s1[i];
k34[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

74

if(k34[i]>maxtachy21)
{
maxtachy21=k34[i];
}
}
printf("\nmaxtachy21=%f",maxtachy21);

//tachy22
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=tachy22[i]*s2[i];
b+=tachy22[i];
c+=s2[i];
d+=tachy22[i]*tachy22[i];
e+=s2[i]*s2[i];
k35[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k35[i]>maxtachy22)
{
maxtachy22=k35[i];
}
}
printf("\nmaxtachy22=%f",maxtachy22);

//tachy23
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=tachy23[i]*s3[i];
b+=tachy23[i];
c+=s3[i];
d+=tachy23[i]*tachy23[i];
e+=s3[i]*s3[i];

75

k36[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k36[i]>maxtachy23)
{
maxtachy23=k36[i];
}
}
printf("\nmaxtachy23=%f",maxtachy23);

//tachy31
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=tachy31[i]*s1[i];
b+=tachy31[i];
c+=s1[i];
d+=tachy31[i]*tachy31[i];
e+=s1[i]*s1[i];
k37[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));
if(k37[i]>maxtachy31)
{
maxtachy31=k37[i];
}
}
printf("\nmaxtachy31=%f",maxtachy31);

//tachy32
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=tachy32[i]*s2[i];
b+=tachy32[i];
c+=s2[i];

76

d+=tachy32[i]*tachy32[i];
e+=s2[i]*s2[i];
k38[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k38[i]>maxtachy32)
{
maxtachy32=k38[i];
}
}
printf("\nmaxtachy32=%f",maxtachy32);

//tachy33
a=0;
b=0;
c=0;
d=0;
e=0;

for(i=0;i<=4800-1;i++)
{
a+=tachy33[i]*s3[i];
b+=tachy33[i];
c+=s3[i];
d+=tachy33[i]*tachy33[i];
e+=s3[i]*s3[i];
k39[i]=(a-((b*c)/4800))/sqrt((d-((b*b)/4800))*(e-((c*c)/4800)));

if(k39[i]>maxtachy33)
{
maxtachy33=k39[i];
}
}
printf("\nmaxtachy33=%f",maxtachy33);

// calculations for R,phi,B

RN1=sqrt(((maxnormal11)*(maxnormal11)+(maxnormal12)*(maxnormal12)+(maxnorm
al13)*(maxnormal13))/3);
RN2=sqrt(((maxnormal21)*(maxnormal21)+(maxnormal22)*(maxnormal22)+(maxnorm
al23)*(maxnormal23))/3);

77

RN3=sqrt(((maxnormal31)*(maxnormal31)+(maxnormal32)*(maxnormal32)+(maxnorm
al33)*(maxnormal33))/3);

RB1=sqrt(((maxbrady11)*(maxbrady11)+(maxbrady12)*(maxbrady12)+(maxbrady13)*(
maxbrady13))/3);
RB2=sqrt(((maxbrady21)*(maxbrady21)+(maxbrady22)*(maxbrady22)+(maxbrady23)*(
maxbrady23))/3);
RB3=sqrt(((maxbrady31)*(maxbrady31)+(maxbrady32)*(maxbrady32)+(maxbrady33)*(
maxbrady33))/3);

RT1=sqrt(((maxtachy11)*(maxtachy11)+(maxtachy12)*(maxtachy12)+(maxtachy13)*(
maxtachy13))/3);
RT2=sqrt(((maxtachy21)*(maxtachy21)+(maxtachy22)*(maxtachy22)+(maxtachy23)*(
maxtachy23))/3);
RT3=sqrt(((maxtachy31)*(maxtachy31)+(maxtachy32)*(maxtachy32)+(maxtachy33)*(
maxtachy33))/3);

printf("\nRN1=%f",RN1);
printf("\nRN2=%f",RN2);
printf("\nRN3=%f",RN3);

printf("\nRB1=%f",RB1);
printf("\nRB2=%f",RB2);
printf("\nRB3=%f",RB3);

printf("\nRT1=%f",RT1);
printf("\nRT2=%f",RT2);
printf("\nRT3=%f",RT3);

phiN1=acos((maxnormal11+maxnormal12+maxnormal13)/sqrt(((maxnormal11)*(maxno
rmal11)+(maxnormal12)*(maxnormal12)+(maxnormal13)*(maxnormal13))*3));
phiN2=acos((maxnormal21+maxnormal22+maxnormal23)/sqrt(((maxnormal21)*(maxno
rmal21)+(maxnormal22)*(maxnormal22)+(maxnormal23)*(maxnormal23))*3));
phiN3=acos((maxnormal31+maxnormal32+maxnormal33)/sqrt(((maxnormal31)*(maxno
rmal31)+(maxnormal32)*(maxnormal32)+(maxnormal33)*(maxnormal33))*3));

phiB1=acos((maxbrady11+maxbrady12+maxbrady13)/sqrt(((maxbrady11)*(maxbrady11
)+(maxbrady12)*(maxbrady12)+(maxbrady13)*(maxbrady13))*3));
phiB2=acos((maxbrady21+maxbrady22+maxbrady23)/sqrt(((maxbrady21)*(maxbrady21
)+(maxbrady22)*(maxbrady22)+(maxbrady23)*(maxbrady23))*3));

78

phiB3=acos((maxbrady31+maxbrady32+maxbrady33)/sqrt(((maxbrady31)*(maxbrady31
)+(maxbrady32)*(maxbrady32)+(maxbrady33)*(maxbrady33))*3));

phiT1=acos((maxtachy11+maxtachy12+maxtachy13)/sqrt(((maxtachy11)*(maxtachy11)
+(maxtachy12)*(maxtachy12)+(maxtachy13)*(maxtachy13))*3));
phiT2=acos((maxtachy21+maxtachy22+maxtachy23)/sqrt(((maxtachy21)*(maxtachy21)
+(maxtachy22)*(maxtachy22)+(maxtachy23)*(maxtachy23))*3));
phiT3=acos((maxtachy31+maxtachy32+maxtachy33)/sqrt(((maxtachy31)*(maxtachy31)
+(maxtachy32)*(maxtachy32)+(maxtachy33)*(maxtachy33))*3));

printf("\nphiN1=%f",phiN1);
printf("\nphiN2=%f",phiN2);
printf("\nphiN3=%f",phiN3);

printf("\nphiB1=%f",phiB1);
printf("\nphiB2=%f",phiB2);
printf("\nphiB3=%f",phiB3);

printf("\nphiT1=%f",phiT1);
printf("\nphiT2=%f",phiT2);
printf("\nphiT3=%f",phiT3);

BN1=RN1*sin(phiN1);
BN2=RN2*sin(phiN2);
BN3=RN3*sin(phiN3);

BT1=RT1*sin(phiT1);
BT2=RT2*sin(phiT2);
BT3=RT3*sin(phiT3);

BB1=RB1*sin(phiB1);
BB2=RB2*sin(phiB2);
BB3=RB3*sin(phiB3);

printf("\nBN1=%lf",BN1);
printf("\nBN2=%lf",BN2);
printf("\nBN3=%lf",BN3);

79

printf("\nBT1=%lf",BT1);
printf("\nBT2=%lf",BT2);
printf("\nBT3=%lf",BT3);

printf("\nBB1=%lf",BB1);
printf("\nBB2=%lf",BB2);
printf("\nBB3=%lf",BB3);

BN=(BN1+BN2+BN3)/3;
BB=(BB1+BB2+BB3)/3;
BT=(BT1+BT2+BT3)/3;

printf("\nBN=%f",BN);
printf("\nBB=%f",BB);
printf("\nBT=%f",BT);

if((BN<BT)&&(BN<BB))
printf("\nInput ECG signal is a normal signal");
else
{if((BB<BN)&&(BB<BT))
{
printf("\nInput ECG signal is a bradycardia signal");
}
else
printf("\nInput ECG signal is a tachycardia signal");
}

printf("\nHeart Rate=%d",HEART_RATE);

exit();
}

80

REFERENCES

81

REFERENCES

[1] Dr. Ralf Bousseljot and Dr. Dieter Kreiseler, “ECG Signal Analysis by Pattern

Comparison”, IEEE Transactions on Computers in Cardiology Vol25, 1998

[2]Benny P L Lo and Guang-Zhong Yang, “Key Technical Challenges and Current

Implementations of Body Sensor Networks”, Department of Computing, Imperial

College London, UK, September, 2006.

[3]Dejan Raskovic, Emil Jovanov, Thomas Martin, Shuaib Hanief and Pedro Gelabert ,

“Energy Profiling of DSP Applications, A Case Study of an Intelligent ECG monitor”,

October, 2002.

[4]Borivoje Furht and Alex Perez, “An Adaptive real-time ECG Compression Algorithm

with Variable Threshold”, IEEE transactions on Biomedical Engg., Vol.35, No.6, Jume

1988.

[5]Jalaleddine, Sateh M. S., 1990, "ECG Data Compression Techniques--A Unified

Approach", IEEE Transactions on Biomedical Engineering, Vol. 37, No. 4., pp. 329-343

[6]Suleyman Canan, Yuksel Ozbay and Bekir Karlik, “A method for removal of low

varying frequency trend from ECG signal”, presented in 2nd International Biomedical

Engineering Days, 1998.

[7]John Stevenson, “Code Composer Studio IDE v3 White Paper”, Texas Instruments,

July 2004.

[8]TMS320C6000 Programmer’s Guide, Texas Instruments, August 2002.

[9]Victor M. dePinto, “Muscle Artifacts noise detectors for ECG signals”, Quinton

Instrument Company, December 1999.

 [10]http://www.cis.hut.fi/Opinnot/T-61.6010/s04/local/aksela.ppt

[11]http://medstat.med.utah.edu/kw/ecg/

[12]www.cis.hut.fi/Opinnot/T-61.6010/s04/local/Model_based_spectral_analysis.ppt

[13]http://www.patentstorm.us/patents/5762068.html

[14]medresidents.stanford.edu/TeachingMaterials/EKG%20Basics/EKG%20Basics%20-

%20Long.ppt

