Schedule for MEMS Devices

Date	9.30 am to 11.15 am	11.30 am to 1.00 pm	2.00 pm to 3.15 pm	3.30 pm to 5.00 pm
23 rd Nov 15	Nanotechnology & MEMS:	Materials, Thin film deposition and	Experiments with MEMS Devices-	Lithography & some etching followed by Q&A
	Introduction and some	growth	Sensimer	(Dr. Nitin Kale)
	applications	(Dr. Nitin Kale)	(Team NanoSniff)	
	(Dr. Nitin Kale)			
24 th Nov 15	Etching and Bonding- Die, Wafer,	Architecture of Device, Fabrication	Experiments with MEMS Devices-	MEMS Characterization followed by Q&A
	Wire	and Process Integration	OmniCant	(Dr. Nitin Kale)
	(Dr. Nitin Kale)	(Dr. Nitin Kale)	(Team NanoSniff)	
25 th Nov 15	Introduction to COMSOL	Guided Hands-On:	Guided Hands-On:	Introduction to RF Module, Theory and Features,
	Multiphysics, A general workflow,	1. Capacitive Pressure Sensor: This	Electrostatically Actuated	Overview of Boundary and Domain conditions
	Geometry, Meshing	model shows how to simulate the	Cantilever- Static and Modal	specific to RF Modelling.
		response of the pressure sensor to	Analysis, Frequency Response	
	Model Demonstration: A tunable	an applied pressure, and also how to	Analysis	Guided Hands-On
	MEMS capacitor:	analyse the effects of packing		Dipole Antenna: The model shows how to simulate
		induced stresses on the sensor		antenna configuration and also shows how to
	As a demonstration it will be	performance.		evaluate antenna parameters such as Impedance and
	shown how to compute the			far fields.
	capacitance of a MEMS capacitor.	2. Piezo ceramic Tube: This model		H-bend waveguide: The transmission of a TE10 wave
		performs a static 2D axisymmetric		through a 90 degree bend in a waveguide is
	MEMS modelling: Theory and	analysis of a piezoelectric actuator.		modelled. It will also be shown how to get S-
	Features: This session will focus on	The model shows how to simulate		parameters for this waveguide.
	introductory features of MEMS	both direct and reverse piezo electric		
th	module including some theory	effects		
26 th Nov 15	Introduction to CoventorWare	MEMS Piezo-resistive Pressure	MEMS Piezo-resistive Pressure	MEMS Piezo-resistive Pressure Sensor Simulation &
	A general workflow, Geometry,	Sensor modelling:	Sensor modelling:	Results
	Meshing	· Creating Process Flow	· Assigning boundary names for 3D	· Simulation settings for Mechanical & PZR analysis
	Model Demonstration:	· Creating 2D Layout	Model	· Post processing of simulation results
	MEMS Piezo-resistive	· Solid/3D Model building & Editing	· Meshing	
anth au die	Pressure Sensor Model Demonstration: MEMS	NATNAC lataval Caracitiva	NATRAC lateral Compositive	NATING Lateral Corpositive Appalanement of Circulation 9
27 th Nov 15		MEMS lateral Capacitive	MEMS lateral Capacitive	MEMS lateral Capacitive Accelerometer Simulation &
	lateral Capacitive Accelerometer	Accelerometer modelling: · Creating Process Flow	Accelerometer modelling: · Solid/3D Model building & Editing	Results Simulation cettings for Floatrical Mechanical 9
		_	Assigning boundary names for 3D	· Simulation settings for Electrical, Mechanical & Elecro -Mechanical analysis
		· Creating 2D Layout	Model	
				· Post processing of simulation results
28 th Nov 15	Model Description: MEMS	MEMS Cantilever modelling:	Meshing MEMS Cantilever modelling:	MEMS Cantilever Simulation & Results
∠8 INOV 15	Cantilever	Creating Process Flow	Create solid model/3D model	Simulation settings for Electrical, Mechanical &
	Cantilevei	· Creating Process Flow · Creating 2D Layout	Assigning boundary names for 3D	Elecro -Mechanical analysis
		Creating 2D Layout	Model	Post processing of simulation results
			· Meshing	Fost processing or simulation results
			. Mesulik	

Schedule for LabVIEW and Application Hardware Integration

Date	9.30 am to 11.15 am	11.30 am to 1.00 pm	2.00 pm to 3.15 pm	3.30 pm to 5.00 pm
	•	LabVIEW Software applications		
30 th Nov 15	Introduction to Virtual Instrumentation	Graphical System Designing	Designing user interface , Data types & display modes	Structures, Loops, Timing functions, Documenting your code
01 st Dec 15	Introduction to Array, Clusters, File formats	File I/O functions, Read & write data using I/O function	LabVIEW advance programming & applications	Real Time Data Acquisition System Designing
	F	Real time Biomedical data acquisition using	sensors	
02 nd Dec 15	Introduction to NI ELVIS & Real Time Systems	Circuit designing with ELVIS, Biomedical Instrumentation & applications, Hands on Biomedical sensors	ECG, EKG acquisition & analysis, filtering & FFT on acquired bio-signals, body fatigue & surface temperature measurements	Acquisition & analysis of Heart Beat, & Blood Pressure signals,
	Introduction to Re	econfigurable I/O Hardware for Robotics/M	•	
03 rd Dec 15	Introduction to myRIO for robotics education	Graphical Program development with myRIO	LabVIEW FPGA applications with myRIO	Ecosystem of sensors & actuators
04 th Dec 15	Embedded system design with myRIO with hands on application	Control system design with myRIO with hands on application eg: Image, Audio/video processing Image Processing using NI Smart Came	Mechatronics system design, Introduction to Robotics applications	myRIO & its Robotics system designing
05 th Dec 15	Introduction to Image			Vision & Motion
US Dec 15	Introduction to Image signal processing & NI Smart Camera	Image acquisition, processing & display	LabVIEW FPGA & Image processing real time applications hands on	Industrial applications, Question & Answer Session

Schedule for Analog CMOS VLSI Design

Date	9.30 am to 11.15 am	11.30 am to 1.00 pm	2.00 pm to 3.15 pm	3.30 pm to 5.00 pm
7 th Dec 2015	Introduction to CMOS	MOS Models	Passive and Active Current	Hands-on session
	analog VLSI	(Dr. S. S. Rathod)	Mirrors	
	(Dr. S. S. Rathod)		(Dr. S. S. Rathod)	
8 th Dec 2015	Band Gap References	Single Stage Amplifiers	Single Stage Amplifiers	Hands-on session
	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	
9 th Dec 2015	Differential Amplifiers	MOS Operational Amplifiers	MOS Operational Amplifiers	Hands-on session
	(Dr. S. S. Mande)	(Dr. S. S. Mande)	(Dr. S. S. Mande)	
10 th Dec 2015	Switch Capacitor Circuits	Switch Capacitor Circuits	Current Mode Circuits	Hands-on session
	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	(Prof. N. A. Bhagat)	
11 th Dec 2015	Oscillators	Phase-Locked Loop	Phase-Locked Loop	Hands-on session
	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	
12 th Dec 2015	Analog Layout Techniques	Analog Layout Techniques	AMS design flow	Hands-on session
	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	

Schedule for Control Design with EICASLAB and Power Electronics and drives with PSIM

Date	9.30 am to 11.15 am	11.30 am to 1.00 pm	2.00 pm to 3.15 pm	3.30 pm to 5.00 pm
14 th Dec 2015	Converters	Converters	DC Drives	AC Drives
15 th Dec 2015	Control Design	Control Design with EICASLAB (FTD Infocom Bangalore)		
16 th Dec 2015	Soft Starter based Motor Drive Systems using PSIM (Trident Techlabs Pune)			
17 th Dec 2015	PWM Generation and Interfacing with TI DSP Hardware using PSIM (Trident Techlabs Pune)			
18 th Dec 2015	System Analysis in Z-domain Loss calculation of Power Electronics Devices (Trident Techlabs Pune)			
19 th Dec 2015	Application of Power Electronics in Renewable energy field (Solar, Wind and Battery) using PSIM			

Schedule for ASIC Verification with SystemVerilog

Date	9.30 am to 11.15 am	11.30 am to 1.00 pm	2.00 pm to 3.15 pm	3.30 pm to 5.00 pm	
21 st Dec 2015	Fundamentals of Object	Hands-on session on Object Oriented Programming			
	Oriented Programming	(Classes, inheritance, po	(Classes, inheritance, polymorphism, arrays, virtual function etc.)		
	(Dr. Prachi Gharpure)	(Dr. D. R. Kalbande)			
22 nd Dec 2015	Programmable Devices	Verilog HDL	Verilog HDL	Hands-on session	
	(Mr. Pawan Fakatkar)	(Mr. Pawan Fakatkar)	(Mr. Pawan Fakatkar)	on Verilog HDL	
23 rd Dec 2015	Verification Basics	Data Types	Procedural Statements	Hands-on session	
	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	on SystemVerilog	
24 th Dec 2015	OOP for SystemVerilog	Randomization	Randomization	Hands-on session	
	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	on SystemVerilog	
25 th Dec 2015	Interprocess Communication	Interprocess Communication	Assertions	Hands-on session	
	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	on SystemVerilog	
26 th Dec 2015	Functional Coverage	Functional Coverage	Interfacing with C	Hands-on session	
	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	(Dr. S. S. Rathod)	on SystemVerilog	